Basic proportionality Theorem or Thales Theorem class 10th

Imp points or results used in  Basic proportionality theorem or Thales theorem:-

(i) Area of Triangle = 1/2 base* height

Area of Triangle= 1/2 base*height
                    =1/2 BC*AD

(ii) Area of obtuse triangle = 

In this figure CM is height of the triangle and AB is the base
Area of triangle = 1/2 base* height
                   =1/2 AB* CM

(iii)Two triangles on the same base (or equal bases) and between the same parallels are equal in areas.(class 9th)
There are two triangle in this figure △CDA and △CDB
so,  ar(CDA)= ar(CDB)

Theorem 6.1
if a line is drawn parallel to one side of triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
 Proof
 Given:-  triangle ABC in which a line l parallel to side BC intersects other two sides AB and AC at D and E respectively. 

Prove that:- AD/ DB=AE/EC
Construction:- let us join BE and CD and then draw DG perpendicular on AC and EF perpendicular on AB.


 area of △ =1/2 base* height 
you may denote the area of   as ar

so we can write area of ADE  as ar(ADE).

sar(ADE)=1/2 AD*EF   .......(1)
         Also, ar(ADE)=1/2 AE*DG  .......(2)

similarly ar(BDE) =1/2 DB*EF   .......(3)  
                [Area of obtuse triangle result(ii)]
  
  and   ar(DEC)=1/2 EC*DG ............(4)
                [Area of obtuse triangle result(ii)]

[divide eq (1) by (3)]
 ar(ADE) / ar(BDE) =1/2 AD*EF / 1/2 DB*EF 
                      =AD/DB   ........(5)

and   [divide eq (2) by (4)]
ar(ADE)/ar(DEC)=1/2 AE*DG /1/2 EC*DG 
                 =AE/EC  ..........(6)

NOTE THAT:-
BDE and △DEC are on the same base DE and between the same parellels BC and DE. [result(iii)]
so,         ar(BDE) = ar(DEC)   ........(7)

therefore, from eq (5),(6) and (7), we have:

AD/DB = AE/EC

Hence, the theorem is proved 



Comments

Post a Comment

Popular posts from this blog

EXERCISE 6.2 sum no.4 (class 10th )

Sum no. 10 Exercise 6.2 class 10th